

Ex. RM03a

Détermination des propriétés de résistance et de déformabilité de la matrice rocheuse (roche intacte)

Ex. RM03a.1

Essai de compression simple

Sur la base des données Excel reprises ci-dessous (force, déplacements axial **dh** et latéral **dC**) :

- 1. Tracer la courbe contrainte déformation $(\sigma \varepsilon)$ pour chaque type de roche
- 2. Déterminer la résistance à la compression simple, le module de Young à 50% et le coefficient de Poisson

granite			sandstone			marble		
Height [mm]	110			110			110	
Diameter [mm]	55			55			55	
Force [kN]	dh [mm]	dC [mm]	Force [kN]	dh [mm]	dC [mm]	Force [kN]	dh [mm]	dC [mm]
0,0	0,000	0,000	0,0	0,000	0	0,0	0,000	0,000
7,5	0,010	0,000	6,6	0,060	-0,03	0,4	0,011	0,000
20,3	0,019	0,000	13,8	0,120	-0,06	2,9	0,027	0,000
34,8	0,049	0,000	20,8	0,178	-0,09	7,6	0,045	0,000
51,5	0,084	0,000	27,7	0,237	-0,12	16,1	0,064	-0,001
70,5	0,121	-0,010	34,6	0,297	-0,15	30,2	0,085	-0,003
92,5	0,154	-0,010	41,7	0,356	-0,18	45,5	0,102	-0,004
116,7	0,184	-0,010	48,9	0,416	-0,21	61,0	0,119	-0,006
143,6	0,212	-0,020	56,2	0,476	-0,24	76,5	0,136	-0,008
172,4	0,242	-0,020	63,9	0,535	-0,27	92,0	0,152	-0,010
202,7	0,272	-0,030	71,9	0,595	-0,3	107,2	0,168	-0,012
233,9	0,294	-0,040	79,7	0,654	-0,33	122,5	0,184	-0,015
266,9	0,314	-0,048	87,9	0,713	-0,36	135,1	0,197	-0,016
300,7	0,343	-0,056	96,7	0,776	-0,39	150,1	0,212	-0,019
335,2	0,368	-0,065	104,9	0,838	-0,42	164,8	0,228	-0,023
370,0	0,396	-0,078	114,9	0,903	-0,45	178,4	0,243	-0,027
403,8	0,426	-0,089	123,8	0,975	-0,48	190,9	0,258	-0,033
438,3	0,454	-0,100	134,2	1,051	-0,51	204,8	0,276	-0,043
472,5	0,479	-0,112	144,6	1,111	-0,54	216,4	0,291	-0,053
506,0	0,508	-0,130	154,1	1,170	-0,57	226,3	0,306	-0,067
538,6	0,538	-0,157	163,6	1,229	-0,6	234,1	0,321	-0,086
569,0	0,566	-0,208	172,2	1,287	-0,63	239,6	0,336	-0,114
593,4	0,591	-0,323	180,6	1,347	-0,66	242,4	0,351	-0,153
0,1	0,620	-0,438	188,9	1,409	-0,69	242,4	0,367	-0,203
			195,3	1,469	-0,72	239,7	0,382	-0,274
			201,6	1,531	-0,75	235,4	0,397	-0,362
			206,7	1,589	-0,78	230,1	0,413	-0,464
			211,3	1,653	-0,81	229,7	0,414	-0,471
			214,1	1,717	-0,84			
			215,4	1,779	-0,87			
			213,8	1,837	-0,9			
			209,99	1,8954	-0,93			
			149,6	1,9554	-0,96			

Ex. RM03a.2

Essai de traction indirecte (essai brésilien)

Type de roche	Longueur L	Diamètre D	Force
	[mm]	[mm]	[kN]
Marbre (marble)	54.8	54.0	43.7
Granite	53.3	55.0	24.7
Grès (sandstone)	52.0	52.5	3.0

1. Calculer la résistance à la traction

Ex. RM03a.3

Détermination des paramètres de résistance au cisaillement selon les critères de Mohr-Coulomb et de Hoek-Brown à partir des résultats d'essais triaxiaux

Une campagne expérimentale a été menée pour caractériser la résistance au cisaillement d'échantillons intacts de grès. Pour diverses pressions de confinement σ_3 , les contraintes axiales suivantes σ_1 ont été mesurées à la rupture.

Essai	σ_3 [MPa]	σ₁ [MPa]
1	0	61.2
2	1	70.3
3	3	88.5
4	5	101.9
5	10	132.7
6	15	157.4
7	20	175.5

- 1. Déterminer la cohésion "c" et l'angle de frottement "φ" du critère de Mohr-Coulomb.
- 2. Déterminer le paramètre "m" du critère de Hoek-Brown donnant le meilleur ajustement avec ces données.
- 3. Déterminer la résistance à la traction.